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In our everyday life, we often have to make decisions with risky consequences, such as choosing a restaurant for dinner or choosing a form
of retirement saving. To date, however, little is known about how the brain processes risk. Recent conceptualizations of risky decision
making highlight that it is generally associated with emotions but do not specify how emotions are implicated in risk processing.
Moreover, little is known about risk processing in non-choice situations and how potential losses influence risk processing. Here we used
quantitative meta-analyses of functional magnetic resonance imaging experiments on risk processing in the brain to investigate (1) how
risk processing is influenced by emotions, (2) how it differs between choice and non-choice situations, and (3) how it changes when losses
are possible. By showing that, over a range of experiments and paradigms, risk is consistently represented in the anterior insula, a brain
region known to process aversive emotions such as anxiety, disappointment, or regret, we provide evidence that risk processing is
influenced by emotions. Furthermore, our results show risk-related activity in the dorsolateral prefrontal cortex and the parietal cortex
in choice situations but not in situations in which no choice is involved or a choice has already been made. The anterior insula was
predominantly active in the presence of potential losses, indicating that potential losses modulate risk processing.

Introduction
Many decisions in our everyday life, such as choosing a restaurant
for dinner or choosing a form of retirement saving, can be de-
scribed as decisions under risk. Decision sciences such as psychol-
ogy and economics usually define risk as the uncertainty about
which of several possible outcomes will occur, whereby the prob-
ability of each possible outcome is known (Knight, 1921). In
contrast, ambiguity describes a form of uncertainty in which
probabilities and/or possible outcomes are unknown.

Traditional models of risky decision making implicitly assume
that the characteristics of a choice option (e.g., magnitude of
possible outcomes) are cognitively evaluated. In the framework
of expected utility theory, people’s willingness to take risk de-
pends on the concavity of the utility function. In prospect theory,
it additionally depends on the shape of the probability weighting
function (for review, see Bossaerts et al., 2009; Fox and Poldrack,
2009).

Recent approaches, however, highlighted the role of emotions
in decision making. Based on psychological and neuroscientific
research, theories such as the affect heuristic (Slovic et al., 2004),
the risk-as-feelings hypothesis (Loewenstein et al., 2001), and the
somatic marker hypothesis (Damasio et al., 1991) propose that
emotions interact with a cognitive evaluation of the choice prob-
lem to guide behavior. To date, however, it remains unclear how
risk processing is influenced by emotions.

Traditional models of risky decision making further often as-
sume that risk is a context-independent function of the variability
of possible outcomes (e.g., variance) (Markowitz, 1952). Re-
search on the perception of risk, however, indicates that risk per-
ception is neither context independent nor a pure measure of
outcome variability (Weber et al., 2002). One can distinguish risk
processing during or before choice (decision risk) and risk pro-
cessing after or without a choice (anticipation risk), with the
crucial difference that risk information is likely used to guide
choices in the context of decision risk but not in the context of
anticipation risk. Furthermore, individuals’ judgments of per-
ceived risk are more sensitive to downside variability and losses
than to upside variability, indicating that risk might be processed
differently if losses are possible (Weber et al., 1992).

Thus, three main questions regarding risk processing remain
unresolved, namely (1) how risk processing is generally influ-
enced by emotions, (2) whether the neural processing of risk is
context dependent, differing between decision making and pure
outcome anticipation, and (3) whether risk is processed differ-
ently in the brain when individuals are faced with potential losses.

Because single studies use specific tasks, their ability to answer
such general questions is limited. In contrast, quantitative meta-
analyses provide unbiased, objective measures of brain function-
ing and provide a useful approach to address such questions.
Here, we performed quantitative voxelwise meta-analyses on
neural representations of risk using the activation likelihood es-
timation method (ALE) (Turkeltaub et al., 2002; Laird et al.,
2005). Importantly, ALE also allows a comparison of different
task conditions (e.g., decision and anticipation) that were not
contrasted in the same study.

Materials and Methods
Study selection. To identify studies investigating the neural processing of
risk, we performed a literature search in two databases, namely Web of
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Science and Medline. Both databases were searched with the following
logic conjunction of keywords: (“risk” OR “uncertainty”) AND (“deci-
sion making” OR “choice” OR “anticipation”) AND (“fMRI” OR “neu-
roimaging”). The search (performed on November 1, 2009) identified
285 hits. We further identified recent review papers about risky decision
making that explicitly discuss the issue of risk processing in the brain
(Knutson and Bossaerts, 2007; Platt and Huettel, 2008; Rangel et al.,
2008; Rushworth and Behrens, 2008; Mohr et al., 2010b). All studies
found through the database search and those that were cited by one of
these review papers underwent the study selection process. The full se-
lection process included a reading of introduction and methods part of
each article by at least one of the three authors, followed by application of
the following inclusion criteria: (1) functional magnetic resonance im-
aging (fMRI) study involving healthy young adult human participants;
(2) imaging data acquired over the whole brain; (3) availability of peak
activation coordinates from group activation maps; (4) outcomes of the
task are at least partly uncertain; (5) available information for partici-
pants regarding outcome probabilities; and (6) outcomes of the task are
independent of the behavior of others.

The inclusion criteria were chosen to ensure that our results could be
generalized to the population of young healthy adult humans. Several
studies on cognitive aging showed that cognitive changes across the adult
lifespan are paralleled by structural and functional changes in the brain
(Cabeza et al., 2005; Mohr et al., 2010b). Furthermore, older adults often
show activations that are qualitatively different from those of young
adults (Park et al., 2004). Therefore we included only studies that inves-
tigated risk processing in young healthy adults (criterion 1).

Driven by specific functional hypotheses, some neuroimaging studies
do not acquire images of the whole brain but only of parts of the brain,
allowing a higher image resolution. These images, however, impede the
detection of nonhypothesized activations in brain regions that were not
scanned. That is why criterion 2 excludes studies that did not scan the
whole brain.

Because the ALE approach is based on activation foci (see below), we
only included studies that report peak activation coordinates of group
activation maps (criterion 3).

Because risk is usually contrasted with ambiguity—a form of uncer-
tainty in which probabilities are unknown—we included only studies in
which outcomes are uncertain (criterion 4) and probabilities are known,
learned, or could be estimated (criterion 5). We further limited the in-
cluded studies/analyses to those in which outcomes are independent of
the behavior of others (criterion 6), because these might be confounded
with other effects of, e.g., trust or reciprocity.

Because of non-independence considerations, we set an additional
inclusion criterion on the level of analyses. If two risk analyses (e.g.,
contrast and correlation) were performed on the same dataset (and same
time window), we included only the more specific risk analysis (correla-
tion) because it reflects risk processing likely better than the less specific
analysis (contrast).

Thirty studies met the inclusion criteria (Table 1) (supplemental Table
S1, available online on www.jneurosci.org), representing 232 risk-related
foci. Fifteen studies (101 foci) compared conditions, whereas 15 studies
(131 foci) correlated risk with brain activity. Twenty-one studies (172
foci) investigated decision risk, and 10 studies (60 foci) investigated an-
ticipation risk (one study investigated both). We further categorized
studies according to potential outcomes. Eleven studies (101 foci) inves-
tigated risk in the context of only gains, whereas in 11 (92 foci) studies
gains and losses were possible outcomes. For two studies (28 foci), the
categorization was ambiguous because they investigated objective gains
but included an obvious reference point that could lead to the perception
of some positive outcomes as losses (with regard to the reference point).
The tasks of six studies (39 foci) did not include monetary gains or losses
(e.g., only right/wrong as outcomes).

ALE meta-analysis. In contrast to meta-analyses in behavioral sciences
that aim to estimate the true effect size for an effect, fMRI meta-analyses
aim to identify networks of brain regions implicated in certain cognitive
processes (Turkeltaub et al., 2002). The focal question of fMRI meta-
analyses is thus about the location of brain activity associated with spe-
cific cognitive processes rather than about the effect size of the

relationship. Because of this difference in research questions, new meta-
analytic techniques were developed, which are adapted to the format of
fMRI results. Specifically, whereas the key results of behavioral studies
are test statistics ( p, t, or z score) and effect sizes, test statistics in fMRI
studies usually have meaning only together with information about the
location of the effect, often given by the voxel with the highest test statis-
tic. One frequently used meta-analytic technique that exploits this loca-
tion information is ALE.

ALE is a quantitative meta-analysis technique that compares activa-
tion likelihoods calculated from observed activation foci with a null dis-
tribution of randomly generated activation likelihoods. In ALE, peak
activation coordinates from a number of studies investigating similar
effects are pooled (Chein et al., 2002; Turkeltaub et al., 2002; Laird et al.,
2005). These coordinates are generally published relative to Talairach or
Montreal Neurological Institute (MNI) space and therefore need to be
spatially renormalized to a single template.

The resulting coordinates are used to generate “activation likelihoods”
for each voxel in the brain. For each focus, ALE scores each voxel as a
function of its distance from that focus using a three-dimensional Gauss-
ian probability density function centered at the coordinates of the focus.
As a result, ALE gets vectors of values for each voxel representing prob-
abilities to belong to specific foci. These values are assumed to be inde-
pendent (the existence of one focus does not give information about
whether another focus will occur) and are combined with the addition
rule for log-probabilities, yielding so-called ALE statistics. The ALE sta-
tistic represents the probability of a certain voxel to belong to any of the
included foci.

To test for significance, the ALE statistic in each voxel is compared
with a null distribution, generated via repeatedly calculating ALE statis-
tics from randomly placed activation foci (same number as included in
the study). This null distribution is then used to estimate the threshold

Table 1. Included risk studies

No. of
risk-related foci

Context Analysis Domain

DR AR Corr Contr G G � L O

Volz et al. (2004) 5 x x x
Volz et al. (2003) 7 x x x
Preuschoff et al. (2006) 22 x x x
Paulus et al. (2003) 5 x x x
Paulus et al. (2001) 10 x x x
Preuschoff et al. (2008) 16 x x x
Critchley et al. (2001) 4 x x x
Kuhnen and Knutson (2005) 2 x x x
Matthews et al. (2004) 4 x x x
Tobler et al. (2006) 1 x x x
Huettel et al. (2005) 10 x x x
Hsu et al. (2005) 12 x x x
Dreher et al. (2006) 4 x x x
Huettel (2006) 15 x x x
Grinband et al. (2006) 8 x x x
Behrens et al. (2007) 1 x x x
Rolls et al. (2008) 1 x x x
Yoshida and Ishii (2006) 3 x x x
Smith et al. (2009) 2 x x x
Weber and Huettel (2008) 16 x x x
Bach et al. (2009) 2 x x x
Blackwood et al. (2004) 6 x x x
Elliott et al. (1999) 12 x x x
Engelmann and Tamir

(2009)
32 x (25)a x (7)a x x

Labudda et al. (2008) 6 x x x
Lee et al. (2008) 3 x x x
van Leijenhorst et al. (2006) 16 x x x
Xue et al. (2009) 3 x x x
Christopoulos et al. (2009) 2 x x x
Mohr et al. (2010a) 2 x x x
Number of foci 232 172 60 131 101 101 92 67

DR, Decision risk; AR, anticipation risk; Corr, correlation; Contr, contrast; G, gains; G � L, gains and losses; O, other.
aEngelmann and Tamir (2009) investigated risk in both contexts.
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resulting for a given false discovery rate (FDR). Finally, a cluster thresh-
old (minimum spatial extent of significant clusters) can be applied.

The ALE meta-analysis can also be used to contrast two independent
meta-analyses. In this case, the ALE statistic in each voxel is calculated as
the difference in ALE values between the two meta-analyses. Whereas

ALE values can only be positive in a single ALE
meta-analysis, they can be negative as well in a
contrast of ALE meta-analyses. The null distri-
bution is calculated accordingly via calculating
the differences between ALE statistics of ran-
domly generated foci (again, same number of
foci as included in the respective studies).
Additional steps of the analysis equal the pro-
cedure used for a single ALE meta-analysis de-
scribed above.

The ALE procedure was recently improved
in that activation foci are now smoothed only
in gray matter and in that group statistics are
calculated as random effects, so that results can
now be generalized beyond the studies in the
sample (Eickhoff, 2009). Because this ap-
proach does not yet allow contrasting two sets
of foci, we applied the standard approach in
this study. Still, we report the results of each
single meta-analysis using the new approach
in the supplemental data (available at www.
jneurosci.org as supplemental material) and
show that they do not differ qualitatively from
the results obtained with the standard ap-
proach. Actually, most clusters of significant
foci were larger using the new approach (see
supplemental data, available at www.jneurosci.
org as supplemental material).

Application of the ALE meta-analysis. We
first transformed MNI coordinates into Ta-
lairach space using the icbm2tal (Lancaster et
al., 2007) transformation implemented in the
GingerALE toolbox (http://brainmap.org; Re-
search Imaging Center of the University of
Texas Health Science Center, San Antonio,
Texas). Second, we calculated different ALE
meta-analyses with GingerALE. The ALE sta-
tistics in each of these meta-analyses is calcu-
lated by modeling each equally weighted
activation peak using a three-dimensional
Gaussian probability density function with a
full-width half-maximum that is calculated as
the average smoothing kernel of the included
studies weighted with the number of foci for
each study. To test for significance, we gener-
ated null distributions from 10,000 permuta-
tions for each meta-analysis.

The first meta-analysis included all risk-
related foci (risk analysis), independent of the
context. Additionally, we divided risk-related
foci in two groups according to their context
(decision risk vs anticipation risk) and con-
ducted separate meta-analyses for each group
of foci (decision risk analysis and anticipation
risk analysis). A contrast of these two meta-
analyses identified regions that are more active
in one context than in the other context (deci-
sion risk vs anticipation risk analysis). Simi-
larly, we divided risk-related foci into two
different groups according to the presence of
losses (gains only and gains � losses, respec-
tively). A third group of foci that represented
neither gains nor gains � losses (but, e.g., right
vs wrong or pain) was omitted from these
analyses. To identify the effect of losses on risk

processing, we contrasted the gains foci with the gains � losses foci
(gains � losses vs gains only analysis). One has to note, however, that
the two comparisons of groups of foci (decision risk vs anticipation
risk and gains � losses vs gains, respectively) were not independent

Figure 1. Neural representations of risk. Results from an ALE meta-analysis on risk independent of the context (decision risk or
anticipation risk) and the domain (gains� losses or only gains in which risk was investigated). Activated clusters included bilateral
aINS, DMPFC, and thalamus (FDR of �0.05; cluster size of �200 mm 3).

Figure 2. Neural representations of decision risk and anticipation risk. A, Risk activated bilateral aINS and DMPFC in both a
meta-analysis on decision risk and a meta-analysis on anticipation risk (although there is in all cases only a small overlap). Right
DLPFC and right parietal cortex (both not displayed) were solely activated by decision risk. B, Right aINS, right DLPFC (not dis-
played), DMPFC, and right parietal cortex (not displayed) were more likely to be activated by decision risk compared with antici-
pation risk in a meta-analysis on the contrast between the two contexts in which risk was investigated. Left aINS, in contrast, was
more likely to be activated by anticipation risk.
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(Table 1). Most foci from the gains group were
investigated during decision making (and vice
versa), whereas most foci from the gains �
losses group also belong to the set of foci for
anticipation risk.

Results
In the risk analysis, we included all risk-
related foci from all studies (232 foci)
independent of the specific context (deci-
sion context vs anticipation context) and
domain (gains � losses vs gains). We
found representations of risk in bilateral
anterior insula (aINS), thalamus, dorso-
medial prefrontal cortex (DMPFC), right
dorsolateral prefrontal cortex (DLPFC),
right parietal cortex, left precentral gyrus,
and occipital cortex (supplemental Table
S2, available at www.jneurosci.org as sup-
plemental material) (Fig. 1).

To analyze the differences in represen-
tation of decision risk and anticipation
risk, we conducted separate meta-analyses
of studies involving these types of risk.
The goal was to identify common neural
substrates by using a conjunction analysis
and to identify dissociations by contrast-
ing the results of the meta-analyses. Both
decision risk and anticipation risk acti-
vated bilateral aINS, DMPFC, and thala-
mus (supplemental Table S3, S4, available
at www.jneurosci.org as supplemental
material) (Fig. 2A). Significant clusters of
the two contexts showed, however, only
small overlap in these regions or did not
overlap at all (thalamus).

To investigate activations associated
only with decision or anticipation risk, re-
spectively, we conducted an ALE meta-
analysis on the contrast between decision risk and anticipation
risk (decision risk vs anticipation risk analysis). Right aINS,
DMPFC, DLPFC, parietal cortex, striatum, and occipital cortex
were significantly more likely to be activated by decision risk,
whereas left aINS and left superior temporal gyrus (STG) showed
significantly higher ALE values for anticipation risk (supplemen-
tal Table S5, available at www.jneurosci.org as supplemental ma-
terial) (Fig. 2B).

Because tasks that investigated neural representations of risk
sometimes only included gains as possible outcomes and others
also included losses, we formed two groups of foci according to
this criterion. The goal of these analyses was to investigate
whether risk is processed differently if subjects could lose money.
Here we again conducted separate meta-analyses for the two
groups of foci to identify common neural substrates and con-
trasted the results of the meta-analyses to identify significant dif-
ferences. We found risk-related activations in both analyses in
right aINS, DMPFC, and thalamus (supplemental Tables S6, S7,
available at www.jneurosci.org as supplemental material) (Fig.
3A). Only the cluster in right aINS, however, showed an overlap
between the two analyses. When contrasting the two sets of foci,
we found that left aINS, left STG, and left precentral gyrus were
more likely to be activated when losses were possible, whereas
DMPFC, DLPFC, right parietal cortex, thalamus, and occipital

cortex were more likely to be activated if only gains were possible
(supplemental Table S8, available at www.jneurosci.org as sup-
plemental material) (Fig. 3B).

Discussion
In our everyday life, we often have to make decisions with risky
consequences. In fact, the outcome of a specific action is rarely
certain. That is why risk has become an important concept in
decision sciences. In the present study, we investigated three
main questions regarding risk processing, namely (1) how risk
processing is influenced by emotions, (2) whether the neural pro-
cessing of risk is context-dependent, differing between decision
making and pure outcome anticipation, and (3) whether risk is
processed differently in the brain when individuals are faced with
potential losses.

To answer these questions, we conducted quantitative
coordinate-based meta-analyses on studies investigating neural
representations of risk. By using the ALE approach (Laird et al.,
2005), we can base our argumentation not only on a single study
or a qualitative view on several studies but on a quantitative in-
tegration of 30 studies investigating risk. Although the ALE ap-
proach does not take the cluster size and significance-level ( p, t,
or z score) of an activated cluster into account, it offers the op-
portunity to locate an effect precisely, which is especially impor-

Figure 3. Domain-specific neural representations of risk. A, Risk investigated in tasks that included both the gain and the loss
domain activated bilateral aINS, DMPFC, and thalamus. In contrast, risk representations investigated only in the gain domain only
include right aINS and DMPFC. B, Left aINS was more likely to be activated if both gains and losses were possible outcomes, whereas
DMPFC was more likely to be activated if only gains were possible.

6616 • J. Neurosci., May 12, 2010 • 30(19):6613– 6619 Mohr et al. • Neural Processing of Risk



tant in the context of large brain regions that likely consist of
subregions serving different functions (e.g., medial prefrontal
cortex) (Venkatraman et al., 2009a). Note that an alternative ap-
proach for fMRI meta-analyses could summarize studies based
on effect sizes (and their SEs). This approach would have the
advantage that small effects that remained undetected in single
studies could be discovered as being significant. To our knowl-
edge, however, no fMRI meta-analysis based on effect sizes has
been published to date. One reason for this is that fMRI meta-
analyses are only feasible, when whole brain maps of these statis-
tics are available. When effect sizes are reported only for
significant activations (as is currently the standard), effect sizes
for all other areas remain unknown, and there is currently no
method to estimate them with any confidence (Costafreda,
2009). Hence, the current reporting format of fMRI studies does
not allow performing (effect-size based) meta-analyses that could
detect weak but stable effects that were not published because of a
publication bias for results with strong effects (that is inherent to
fMRI studies with often small sample sizes). Note, however, that
our identification of the thalamus as an important part of the risk
processing network shows that coordinate-based meta-analyses
allow identifying task-relevant brain regions that are activated in
many studies and yet have remained unnoticed before.

We identified a network including bilateral aINS, dorsome-
dial thalamus, posterior thalamus, DMPFC, right DLPFC, and
right parietal cortex for processing risk. The aINS was active for
both decision risk and anticipation risk but predominantly when
individuals were faced with potential losses. The aINS is regarded
as a key brain region in emotion processing and arousal (Quartz,
2009) but also in the mapping of internal bodily states (Critchley,
2005; Craig, 2009). Several studies related activity in the aINS
especially to aversive emotions such as fear, sadness, disgust, or
anxiety (for review, see Phan et al., 2002; Paulus and Stein, 2006).
Thus, our results clearly support the hypothesis that aversive
emotions are implicated in risk processing independent of the

context but predominantly (not solely) when individuals are
faced with potential losses.

Standing alone, this conclusion is based on reverse inference
(Poldrack, 2006) and needs to be qualified because the aINS is
also active in a variety of tasks not explicitly related to emotions
(Yang et al., 2010). Still, additional evidence comes from behav-
ioral research on the influence of emotions on decision making.
Several studies demonstrated that incidental emotions (i.e., emo-
tions not related to the decision problem) significantly influence
judgment and decision making. Risk judgments, for example,
change when individuals perceive fear or anger (Lerner and Keltner,
2000).

The thalamus is one of the most ignored brain regions in
functional neuroimaging. Although most of the studies included
in our meta-analyses found risk representations in the thalamus,
none of the studies discussed them. We found representations of
risk in posterior and dorsomedial thalamus. The posterior thala-
mus was found to be active in the processing of emotions such as
regret (Chandrasekhar et al., 2008) and showed stronger activity
for losses compared with gains (Xu et al., 2009). Furthermore, the
posterior thalamus is connected to the parietal cortex, which we
also found to be active in risk processing. The dorsomedial thal-
amus is part of the striatal loop and reflects information about
reward magnitudes (Glimcher and Lau, 2005). Interestingly, ac-
tivity in the dorsomedial thalamus covaries with the magnitude
of the smaller of two possible rewards (Minamimoto et al., 2009).
The dorsomedial thalamus is also connected with the prefrontal
cortex, a region that is consistently implicated in risk processing.
Thus, both parts of the thalamus likely process important aspects
of the risky stimulus and relay them to other brain regions of the
risk processing network.

The DMPFC was active during decision risk and anticipation
risk as well as in both domains (gains � losses and gains). It was,
however, more likely to be active during decision risk compared
with anticipation risk. Activity in the DMPFC was found in a

Figure 4. A potential mechanism of risky decision making. A risky stimulus such as a gamble with uncertain outcomes or a choice menu with different financial investments is initially evaluated
on an emotional level. Activity in the aINS thereby serves as an estimate for the potential of the risky stimulus to result in an unwanted outcome, whereas the thalamus reflects important aspects
of potential outcomes (e.g., their variability). At the cognitive level, the risky stimulus is processed in the DMPFC. Both parts of risk processing (emotional and cognitive) inform the actual decision
process performed in DLPFC and parietal cortex. In situations, in which no decision has to be made, such as in the bingo game, the process concludes after emotional and cognitive risk processing.
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variety of different tasks related to the cognitive processing of
stimuli. These studies included investigations of response con-
flict, error monitoring, decision making, as well as strategy selec-
tion (for review, see Ridderinkhof et al., 2004; Venkatraman et al.,
2009b). As recently reported, some of these functions can be
attributed to subregions of the DMPFC (Venkatraman et al.,
2009a). The cluster that we identified overlaps with the subre-
gions for decision control and strategy control in the study by
Venkatraman et al. (2009a). Because taking risks can be seen as
acting against the dominant strategy of avoiding risks in risk-
averse individuals, our findings are consistent with those previ-
ous findings about neural representations of strategy control.

We further found that both the right DLPFC and parietal
cortex were active for decision risk but not for anticipation risk.
Both brain regions were usually observed in the context of deci-
sion making (for review, see Heekeren et al., 2008). In the context
of reward-based decision making, activity in the right DLPFC is
related to valuing choice options (Camus et al., 2009; Mohr et al.,
2010a). These results indicate that DLPFC and parietal cortex do
not play a general role in risk processing but a specific role in risk
processing during decision making.

In summary, our finding of insula activity supports the hy-
pothesis that emotions are implicated in risk processing. The
differential activation patterns for decision risk versus anticipa-
tion risk and for the gain versus gain � loss domain suggest that
risk processing on the neural level is context dependent and spe-
cifically influenced by potential losses (note, however, that con-
text and domain are not fully independent in the fMRI studies we
found).

Based on the results of our meta-analyses, we propose the
following account of a risk-processing mechanism (Fig. 4): when
individuals observe a risky stimulus such as a gamble with uncer-
tain outcomes or an investment option, two parallel and recipro-
cal risk processes are induced, an emotional and a cognitive risk
process. On the emotional level, activity in the aINS initially
serves as a fast and rough estimate for the potential of the stimu-
lus to result in an unwanted outcome (e.g., a loss). At the same
time, this signal prepares the organism to take action to avoid the
unwanted outcome. Activity in the thalamus could thereby re-
flect an anticipation of regret in response to possible outcomes of
the risky stimulus. The DMPFC evaluates the risk of the stimulus
on a cognitive level, for instance, computing the variance of out-
comes or the probability of a loss, thereby using the information
from the aINS and the thalamus as a first estimate for the riskiness
of the stimulus. During this process, information is repeatedly
exchanged between DMPFC on the one hand and aINS and thal-
amus on the other hand, updating the emotional response to the
stimulus, which in turn informs the cognitive processing of risk.
If a decision has to be made, parietal cortex and DLPFC integrate
the risk information with other aspects of the stimulus (e.g., ex-
pected reward) and form the final decision. If no decision has to
be made, like in the bingo game, the process stops after risk pro-
cessing on the emotional and the cognitive level. The mechanism
proposed here is compatible with the general approach of the
risk-as-feelings hypothesis (Loewenstein et al., 2001). Note that
the temporal sequence of risk processing we propose cannot be
derived from our meta-analysis or fMRI data in general. EEG
and/or magnetoencephalographic experiments could shed light
on the temporal sequence of cortical risk processing. Moreover,
the suggested mechanism is based on results of experiments that
investigated risk processing in the presence of only gains or both
gains and losses. No study has so far investigated risk processing
specifically in the loss domain. Future research should target this

obvious lack of research and complete the picture of risk process-
ing for the loss domain.
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